Bacteriophage Mediated Killing of Staphylococcus aureus In Vitro on Orthopaedic K Wires in Presence of Linezolid Prevents Implant Colonization

نویسندگان

  • Sandeep Kaur
  • Kusum Harjai
  • Sanjay Chhibber
چکیده

BACKGROUND Infections of bone and joint tissues following arthroplasty surgeries remain a major challenge in orthopaedic settings. Methicillin resistant Staphylococcus aureus (MRSA) is recognised as an established pathogen in such infections. Combination therapy using linezolid and bacteriophage impregnated in biopolymer was investigated in the present study as an alternative strategy to prevent MRSA colonisation on the orthopaedic implant surface. METHODOLOGY Coating of stainless steel orthopaedic grade K-wires was achieved using hydroxypropylmethlycellulose (HPMC) mixed with phage alone, linezolid alone and phage and linezolid together. The potential of these agents to inhibit adhesion of S.aureus (MRSA) 43300 on K-wires was assessed. Coated and naked wires were analysed by scanning electron microscopy (SEM) and fluorescent staining. RESULT Significant reduction in bacterial adhesion was achieved on phage/linezolid wires in comparison to naked as well as HPMC coated wires. However, maximum reduction in bacterial adherence (∼4 log cycles) was observed on the wires coated with phage-linezolid combination. The frequency of emergence of resistant mutants was also negligible in presence of both the agents. CONCLUSION This study provides evidence to confirm that local delivery system employing linezolid (a potent protein synthesis inhibitor) along with a broad spectrum lytic bacteriophage (capable of self-multiplication) is able to attack the adhered as well as surrounding bacteria present near the implant site. Unlike other antibiotic based therapies, this combination has the potential to significantly restrict the emergence of resistant mutants, thus paving the way for effective treatment of MRSA associated infection of medical implants.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

In Vivo Assessment of Phage and Linezolid Based Implant Coatings for Treatment of Methicillin Resistant S. aureus (MRSA) Mediated Orthopaedic Device Related Infections

Staphylococcus comprises up to two-thirds of all pathogens in orthopaedic implant infections with two species respectively Staphylococcus aureus and Staphylococcus epidermidis, being the predominate etiological agents isolated. Further, with the emergence of methicillin-resistant S. aureus (MRSA), treatment of S. aureus implant infections has become more difficult, thus representing a devastati...

متن کامل

In vitro activity of fosfomycin in combination with various antistaphylococcal substances.

Using the chequerboard technique we studied the in vitro activity of the broad spectrum antibiotic fosfomycin in combination with vancomycin, rifampicin, linezolid, quinupristin/ dalfopristin, cefazolin, meropenem and moxifloxacin against two Staphylococcus epidermidis strains (ATCC 12228, DSM 3269) and five Staphylococcus aureus isolates (ATCC 29213, DSM 683, DSM 46320, GISA 323/93, MRSA 3558/...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

In-vitro and In-vivo Evaluation of Silymarin Nanoliposomes against Isolated Methicillin-resistant Staphylococcus aureus

Staphylococcus aureus is an opportunistic pathogen and remains a common cause of burn wound infections. Different studies have shown that entrapment of plant-derived compounds into liposomes could increase their anti-Staphylococcus aureus activity. Silymarin is the bioactive extract from the known plant Silybum marianum L. The objective of this study was to evaluate efficacy of silymarin in fre...

متن کامل

Comparison of linezolid activities under aerobic and anaerobic conditions against methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium.

Methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus faecium were exposed to linezolid (MIC of 2 mg/liter) under aerobic or anaerobic conditions in an in vitro pharmacodynamic model. Drug concentration and half-life were adjusted to simulate clinical dosing (600 mg twice daily) of linezolid. Linezolid produced a 2-log(10) killing at 24 h, and rates of killing agains...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014